
Double-sine-Gordon solitons in two-dimensional crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 L141

(http://iopscience.iop.org/0953-8984/7/10/004)

Download details:

IP Address: 171.66.16.179

The article was downloaded on 13/05/2010 at 12:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/10
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. M a t e r 7  (1995) L141-LI46. Printed in the UK 

LETTER TO THE EDITOR 

Double-sine-Gordon solitons in two-dimensional crystals 

Alain M Dikandt and Timoleon C KofanC 
Laboratoire de Mecanique, Facult6 des Sciences, UnwersitB de YaoundB I BP 812, Yaaund6. 
Cameroun 

Received 30 December 1994 

Abstract. We consider a model of a crystal monolayer, which consists of a monatomic step 
on an anisotropic substrate of a periodic subsmte interaction potential. The formation of the 
surface mono-atomic step is described by a surface misfit phenomenon involving large-amplitude 
displacements of atoms on the crystal surface. These large-amplitude displacements are misfit 
dislocations whose dynamics are governed by a two-dimensional doublesinffiordon equation. 
Some solutions of this equation. namely the bi.kink soliron solutions, are found with emphasis 
on effects of the surface boundaries. It is shown that the soliton density, which measures the 
bi-kink fraction in a multi-soliton configuration, can be conserved in two dimensions. 

Since the pioneering work of Frank and van der Merwe [I], the surface misfit phenomenon 
and that of adsorption of atoms on a crystal surface have gained interest these last two 
decades due to their applications in a large variety of physical situations. These phenomena 
can be summarized as follows: the substrate atoms located on the crystal step have 
unsaturated chemical bonds, and therefore these atoms are predominantly adsorbed close to 
the step where their coupling with the substrate atoms is stronger. 

A model of surface misfit is  that of a c j s ta l  monolayer, which consists of a mono- 
atomic step on an anisotropic substrate. The question concerning the epitaxy and misfit 
accommodation in this model is about the nature and features of the substrate interaction 
potential. To this point, the behaviour of a monolayer adsorbate (adatom) on a crystalline 
substrate surface as well as the principles governing its formation and stability involve the 
account of adsorbate-adsorbate and adsorbate-substrate interactions 12-81, The adsorbate- 
substrate interaction has the periodicity and symmetry of the crystalline substrate surface 
(for a single adatom as well as for a completed monolayer or multilayer). For surface 
phenomena, the surface geometry is predominated by a two-dimensional (ZD) map. In BCC 
crystals [2-81, the interaction potential displays the twofold symmetry of the rhombic unit 
cell of the (1 10) atomic plane. 

In this letter, following van der Merwe et al [2-81, we use a doubly periodic adatom- 
substrate interaction potential to construct the static theory of surface adatom migration in the 
large-amplitude regime. In this regime, the equation that governs the adatom displacements 
in two dimensions can be written 

~ 

d2u/dlZ + bZd2u/dk2 = (1/2p’)[C1 sin(zu) + C2sin(2zu)] (1) 

where b2 depends on the vertex angle of the ZD map and on surface strain coefficients 
along the x and y axes, p2 is proportional to the adatom-substrate inverse scale, and C, 
and C2 are constant [%.I. Actually, equation (1) which is a 2D double-sineCordon (DSG) 
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equation, describes adatomic displacements in a privileged direction (along the x axis) but 
with influence of the y direction. A complete description had led to a set of two coupled. 
2D DSG equations. However, when the misfit is subcritical we need to consider only single- 
dislocation solutions [Sa]. 

When the vertex angle equals zero, equation (1) turns into a one-dimensional (ID) DSG 
equation. van der Merwe et al [5a] have already used a ID DSC equation to estimate the 
characteristic parameters associated with the formation and growth of a misfit in crystal 
surfaces. Nevertheless, they restricted their analysis to cases in which the misfit has small 
sizes, so small that also the monolayer atomic displacements are everywhere small enough 
for their theory to be valid only in the linear approximation. 

As our goal is to go beyond the linear approximation, we shall solve equation (1) in the 
large-adatomic-displacement limit and using appropriate surface boundary conditions. i.e. 
0 < 1 < L and 0 < k < Q, where L and Q are the total numbers of adatoms along the x 
and y axes respectively. For mathematical simplicity, we introduce the scaled variables 

n = 1 / p ( 2 ) 1 / 2 ~  m = k/bp(2)'I2z 'p =zu. (2) 

Then ( I )  becomes 

vn,, - ' ~ m ~  = [C] sin('p) + C2sin(2~)]. 

v (n ,  m) = 2 t a n - ' [ f ( n ) / g ( ~ 1  (4) 

(3) 

Solving (3), we assume a misfit dislocation described by a soliton ansatz of the form [13-151 

where f ( n )  and g(m) are the generating functions of the misfit dislocation soliton waveform 
along the x and y axes, respectively. When (4)  is substituted into (3). we arrive at the 
following two polynomial equations in f and g 

subject to constraints 

dl = dz = d 

bi+bz=2C2-Ci(1+aZ)/(1-az) .  

The constraint relation (6b) is imposed from the assumption (z(n, m) = f ( n ) / g ( m ) )  

z ( n ,  m )  = z (n  = 0, m = 0) = z(n = L/p(2)%, m = Q/bp(Z)"'n) =&a. (7) 

In this last relation, a must be a constant parameter, else the ansatz (4) will not be valid. 
The polynomial equation (5 )  can be  solved in terms of Jacobi elliptic functions. Indeed, 

this method seems more appropriate for finite-length systems [13-161. In the present case 
there may exist several such solutions depending on the relations between the parameters 
in (5). In what follows we derive some such solutions. 



~ 
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(i) Cnoidal solutions 
The first class of solutions is obtained from the set of relations 

(Sa) - 2dja = a:.: = B:p: 

k: =a:/(a: +ai) = p:/(P: +@) 0 < k!.< 1 i = l .  2 . .  @b) 

2 2  2b l /a  = a1 - a2 2b2/a = P: - 0: 

These conditions lead to the following expressions for f and g 

where the sizes of the misfit dislocation along the x and y directions are respectively defined 
as 

Dx = ( 2 ) 1 / 2 / ( 4  +ff,Z)1/2(-a)1/2 D, = (2)1/2/(p: + p y ( - a ) ' / 2 .  (10) 

These relations instruct us that the parameter a must be negative for the misfit 
accommodation to be possible on the monolayer surface. 
(ii) Snoidal solutions 

For this second class of solutions, the relations between parameters are 

These relations lead to the following expressions for f and g 

where the sizes of the misfit dislocation along the x and y directions are now respectively 

= (2)'/2/al(a)i/2 D, = (2)1/2/pt (a) i /2 .  (13) 

So that a must be positive, but bc negative. 
(iii) Dnoidal solutions 

In this third case the relations between parameters are 

and the corresponding solutions are 
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where the sizes of the misfit dislocation along the x and y directions are respectively 

0, = (2)112/a~(-a)112 D, = (2)’ /2/8~(-a)L/2.  

Hence a must be negative and bi positive. 
(iv) Dsoidal solutions 

For the fourth class of solutions we set 

These conditions lead to the following expressions for f and g 

where the sizes of the misfit dislocafjon along the x and y directions are respectively defined 
as 

and as a consequence, a is positive and bi positive. 
(v) Inverse snoidal solutions 

This is the 1as1 class of solutions. The relations are 

and the corresponding solutions are 

where the sizes of the misfit dislocation along the x and y directions are respectively 

D, = (2)1/2/a~(a)1’2 D, = (2)l/2/ ,3~(a)1i2 (7.2) 

with a and bi positive. 

The set of solutions listed in (i)-(v) are all periodic, owing to the periodicity of Jacobi 
elliptic functions. The periodicity conditions which allow for the accommodation of misfit 
dislocations with the waveforms obtained above, and on the finite support 0 < 1 < L, 
0 < k < Q are given by 

L = rrp(2)”2DXK(k:) Q = j i ~ ( 2 ) ’ / ~ O , K ( k 3  (23) 
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where K(kZ) is the complete elliptic integral of the first kind and ki the associated modulus. 
It is worth remarking that the large-amplitude solutions of the infinite-surface counterpart 
of the ZD DSG equation (3)~are derived from the asymptotic expansions of the Jacobi elliptic 
functions in ( i t ( v )  when k,” + 1. In this limit, sn + tanh. cn + sech, dn + sech, ds 
+ cosech and ns + cotanh. Therefore, we recover the soliton-generating functions found 
in previous studies [I71 in one dimension and already applied in physisorption phenomena 
[9,121. 

The physical configuration of a DSG soliton is like a biIkink: More explicitly, a DSC 
soliton looks like three ‘steps’ which result from two superposed kinks. The physical 
interpretation of signs in some of the solutions obtained above means that one can consider 
a ‘step-up’ or a ‘step-down’ ledge when going in the positive or negative x and y directions, 
either simultaneously or inversely.  the first of these two possibilities gives rise to a 
continuous deformation to the crystal surface whereas the second one leaks rather to a 
discontinuous deformation. Restricting ourselves to the case of a uniform deformation: an 
intriguing problem in this case is of whether the soliton concentration (i.e. the fraction of bi- 
kinks) in a dislocation train will be conserved in the two deformation directions. Discussing 
this problem. we first draw attention to the fact that the quantities Ox and D, are precisely 
the sizes of the scaled soliton p defined in (2). Thus we have to return to the primary 
variables U, I and k which allow us to write 

1, = 7rp(2)”2Dx 1, = 7r&4p(2)l’2Dy (24) 

so I ,  and I ,  are the actual sizes of soliton. 
Now define the soliton fraction in a dislocation train as the ratio of the soliton (bi-kink) 

size. and the maximum number of atoms between any two such solitons [ l ,  111. The last 
quantity is obtained from equations (5). integrating within the larger period of the adatom- 
substrate interaction potential. Results for the solutions in (i)-(v) are generalized as 

Lo = b K ( k : )  Qo = l y K ( k ; )  (25) 

where we have denoted by LO and Qo the maximum number of atoms between two solitons 
with respect to the x and y axis, respectively. Using the appropriate expressions of Ox and 
D, in (i)-(v), we can  derive the soliton concentration with respect to the x axis, i.e. 

n, = n/ZK(k?)  ny = a/ZK(k;) .  (26) 

The first remark concerning these parameters is that they k e  dimensionless. Secondly, the 
number of solitons (bi-kinks) in a dislocation train is conserved in two’dimensions as long 
as k: and k; are equal. 

The vanishing 
behaviour of the soliton concentrahon in the infinite-surface limit can ~ be interpreted as 
consequent upon an increase of the intersoliton separation. We notice that when ki = 0, 
nx = ny = 1. In fact; in this last limit the non-linear feature of the misfit dislocation has 
vanished completely and only linear phenomena occur. By contrast, the first limit (k: + 1) 
gives rise to strong non-linear phenomena. Namely, the soliton sizes gradually increase and 
the bi-kink sharpens until at k? = 1, where the sizes of the transition across a complete 
bi-kink structure are 

In the infinite-surface limit i.e. when k f / l ,  relations (26) vanish. 

1 ,  = lim I ,  12 = lim 1, 
k l - 1  kg-I 
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in the x and y directions respectively. The asymptotic behaviours given above also provide 
relevant information as concerns structural configurations of the misfit dislocation that are 
allowed to accommodate on the surface. Thus the vanishing behaviour of the soliton 
concentration in the infinite-surface limit can also be interpreted as a tendency to prevention 
of appearance of multi-step configurations. So only single dislocations are allowed and their 
maximum number on the crystal surface can be estimated and shown to be naturally infinite. 
Indeed, this can  be verified by a naive estimate from the ratios L / l ,  and Q / l y ,  where L 
and Q tend to infinity when kz -+ 1. 

In conclusion, we have found some large-amplitude solutions of a 2D DSG equation. 
These solutions are solitons (bi-kinks) that contribute to the formation of dislocation trains 
in misfitting monolayers such as BCC crystals. The main result of our study is that we 
predict a tendency to prevention of the formation of multi-step configurations as the surface 
lengths tend to infinity. In fact, this is the consequence of a large separation between 
solitons as the surface lengths are infinite. We have also shown that the number of single 
dislocations that could accommodate on the infinite surface of the crystal is naturally infinite, 
since the dislocation can form at any step on the monolayer provided energetic conditions 
are favourable for creation of a soliton-that is, can promote a large-amplitude adatomic 
displacement. In a future work, we shall estimate some parameters associated with such 
large-amplitude displacements, namely the strain energy, surface tensions and the non-linear 
force provided by the adatom-substrate interaction that drives the misfit dislocation as well 
as the shear strains along the two deformation directions on the crystal surface. 

It is our pleasure to thank Professor Jan H van der Merwe of the University of  Pretoria 
(South Africa) for continual advice and for sending us recent papers on surface phenomena. 
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